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LETTER TO THE EDITOR 

The two-dimensional bond-diluted transverse Ising model 
at zero temperature 

R R dos Santost 
Department of Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, UK 

Received 5 February 1981 

Abstract. The critical behaviour of the bond-diluted two-dimensional quantum transverse 
king model is investigated by an approximate cluster decimation transformation. The 
dependence of the critical field on the concentration shows a discontinuity at the percolation 
concentration, associated with the existence of long-range order in the percolating cluster at 
non-zero transverse field, according to Harris’ conjecture. 

In this Letter we treat the diluted two-dimensional transverse king model at zero 
temperature through an approximate decimation transformation. 

The effects of quenched random impurities (Brout 1959) on thermal critical 
behaviour of magnetic systems have been somewhat established. In addition to shifting 
the critical temperature, the impurities may drive the pure system to a new critical 
behaviour (i.e. new set of critical exponents). A condition for this crossover to occur has 
been given by Harris (1974a) through heuristic arguments: the critical behaviour of the 
pure system is stable (unstable) with respect to randomness if the specific heat exponent 
a is negative (positive). Also, real space renormalisation-group techniques (Niemeijer 
and Van Leeuwen 1976) have provided satisfactory results for critical exponents and 
critical curves of diluted king (Young and Stinchcombe 1976, Kirkpatrick 1977, 
Jayaprakash et a1 1978, Yeomans and Stinchcombe 1978, 1979) and Heisenberg 
(Stinchcombe 1979) models. In these systems bonds (or sites) are present with 
probability p .  As p is decreased from one, the connectivity of the lattice decreases, 
causing the critical temperature to decrease. Below a critical concentration p c ,  the 
percolation concentration (Stauff er 1979), no infinite cluster of connected bonds (or 
sites) is formed so that long-range order is absent. It is interesting to note that when the 
critical behaviour of the pure system is stable with respect to randomness, the critical 
temperature drops continuously to zero at p c ,  since the percolating cluster is chain-like. 

The above picture does not necessarily hold for quantum systems undergoing a 
transition at zero temperature such as the transverse Ising model (TIM) (de Gennes 
1963, Stinchcombe 1973), described by the Hamiltonian 

(1) 

in which the field ri and nearest-neighbour exchange coupling Jii are random variables, 
the 0 ’ s  are Pauli matrices and the sums run over sites on a d-dimensional lattice. In the 
non-random case (ri = r, Jii = J )  the critical behaviour of (1) at finite temperatures 

t On leave from Departamento de Fisica, Universidade Federal de Alagoas, Maceib, Brazil. 

%’= -1 riu; - 2 J i i u f a f  
i (ii) 
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(with respect to T,(r)) is described by the same exponents as the d-dimensional Ising 
model, whereas at T = 0 there is a transition at a critical value of I ' /J with the same 
exponents as the (d + 1)-dimensional Ising model (Pfeuty 1970, Elliott and Wood 1971, 
Pfeuty and Elliott 1971, Young 1975, Hertz 1976, Suzuki 1976). In particular, there is 
a transition in the ground state of the one-dimensional TIM in which gc= ( I ' IJ ) ,  = 1 
(Katsura 1962, Pfeuty 1970). In view of this, Harris (1974b) suggested the presence of 
a discontinuous jump in the critical curve g c ( p )  of the diluted TIM at zero temperature, 
at the percolation concentration p c :  below p c  there is no long-range order so that g, = 0, 
whereas just above p c  the chain-like aspect of the percolating cluster suggests g , s  1. 

To date only a few attempts have been made to investigate such an interesting 
problem. Elliott and Saville (1974) and Lage (1976) used series expansions and CPA, 
respectively, to study the diluted TIM, but they were unable to pick out the zero- 
temperature behaviour. Pfeuty (1979) determined exactly the critical condition for the 
random transverse Ising chain at zero temperature. The difficulties with quantum 
renormalisation-group treatments for the non-random case make generalisations to 
treat the random TIM very hard, although some results in one dimension were obtained 
for special cases of randomness (Uzelac et a1 1979, 1980). 

A very interesting approach was used by Stinchcombe (1981a) to derive an exact 
decimation transformation for the pure transverse Ising chain at zero temperature from 
scaling properties of the two-dimensional Ising model. This treatment was then 
extended (Stinchcombe 198 lb )  to two dimensions within a Migdal-Kadanoff approxi- 
mation (Migdal 1976, Kadanoff 1976). In this way a study of the diluted TIM at zero 
temperature was carried out exactly in one dimension and approximately in two 
dimensions (Stinchcombe 1981b). As the bond-shifting procedure in the Migdal- 
Kadanoff scheme (Migdal 1976, Kadanoff 1976) does not take into account non- 
commutation aspects of the Hamiltonian, it is interesting to compare the results 
obtained by Stinchcombe (1981b) for two dimensions with a different decimation 
scheme. 

The non-random TIM at zero temperature in one and two dimensions was investi- 
gated by dos Santos (1980) within an approximate decimation transformation which 
incorporates non-commutation aspects, and can be naturally extended to dilution 
problems as well as to finite temperatures. In this Letter we report the extension of this 
method to the two-dimensional bond-diluted TIM at zero temperature. 

For the pure system at zero temperature, a decimation recursion relation is 
constructed by examining the transformation properties of the ground state projector 
when every other spin on a d-dimensional lattice is summed out. The simplest 
approximation scheme then consists in summing out the even labelled spins in the 
square cluster of figure 1. If the Hamiltonians for the original and transformed systems 
are described by coupling constants j and 7,  respectively, the renormalisation-group 
transformation (Wilson and Kogut 1974, Wallace and Zia 1978) 

is defined through 

(mlm31~'(7) lmlm3) = 1 (mlm2m3m41~( j)lmlm2m3m4) (3) 

where P and P' are the ground state projectors for the clusters in figures l (a )  and ( b )  
(with j i  = j ,  i = 1,4),  respectively. The states lmi) are eigenstates of af, and one should 
note that the full trace of the ground state projector is preserved under (3), in analogy 

m m 4  
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Figure 1. Clusters used in the decimation transformation for the transverse king model, 
where the couplings j i  = J i /T  can be either 0 or 1. The spins represented by crosses in ( a )  are 
summed out to yield the cluster in ( b )  where spins 1 and 3 interact via a coupling 7.  

with the thermal transformations (Niemeijer and Van Leeuwen 1976). A formal 
discussion about the limitations of treating anisotropy exchange within diagonal 
transformations such as (3) is given by dos Santos (1980). 

In spite of the simplicity of this sort of cluster decimation, its thermal counterpart 
(Kadanoff and Houghton 1975, Barber 1975) has proved very useful in elucidating 
several aspects of the percolation problem (Young and Stinchcombe 1975) and of 
diluted Ising models (Young and Stinchcombe 1976, Yeomans and Stinchcombe 1978, 
1979). 

In the bond-diluted TIM at zero temperature the coupling constants j = l / g  = J / r  
are random variables distributed according to the probability distribution 

P(j i )  = (1 -p)S(ji) +Pa(ji -i) (4) 

where p is the concentration of non-zero coupling constants i. Under a decimation 
transformation, the distribution (4) loses its binary character and, following Yeomans 
and Stinchcombe (1978,1979), it can be approximated by a binary one which preserves 
the total probability for percolation paths as well as the first moment. In this way, the 
recursion relations for the concentration p and coupling constant i are given by 

= 2p2-p4, ( 5 )  

pfjf( j )  = p47(i, i, i, j )  +4p3(1 - p P ( j ,  j ,  i, 0)  + 2p2(1 - ~ ) ~ 7 ( j ,  i, o , ~ ) ,  (6) 

where the function 7(jl, j 2 ,  j3, j 4 )  is obtained from equation (3). 
The RG transformation defined by ( 5 )  and (6) was solved numerically to yield the 

fixed points in table 1, where critical exponents obtained in the usual way (Wilson and 
Kogut 1974) for the non-trivial fixed points are also shown. The spurious fixed point at 
(p  = 0, g" # 0) is attributed to the first moment approximation, since for small p the RHS 
of equation ( 6 )  is dominated by the last term. 

Iteration of equations ( 5 )  and (6) yields the flow diagram of figure 2 where the 
critical curve gc(p) = l/j,(p) represented by bold lines is the boundary for the long- 
range ordered phase at T = 0. The logarithmic slope of the critical curve at the pure 
fixed point, [(l/g,(p)) dg,/dp],,l, is 1.07. 

Although the values obtained at the pure fixed point for the critical field g, = 1.55, 
and for the correlation length exponent, v,=O.49, are not very accurate when 
compared with the series results g, = 3.04 and vg = 0.63 (Pfeuty and Elliott 1971), the 
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Table 1. Fixed points of the recursion relations ( 5 )  and (6) where g = l / j  = r / J ,  and 
correlation length exponents vg and vp (corresponding to quantum and percolative 
behaviours, respectively); q5 is the crossover exponent. 

(0,O); (0, a) - - trivial 
(0,0.426) - - spurious 
(0.618,O) - 0.817 cf p *  = 0.5'"'; v p  = 1.34'b' 
(0.618, 0.873) 0.592 0.817 q5 v, /v ,  = 0.724 
(0.618, m) - - trivial 
(1,O); (1, a) - trivial 
(1,  1.55) 0.496 - cf g* = 3.04"'; vg = 0.63'" 

(*) Obtained from duality arguments (Sykes and Essam 1964). 
(b' Obtained from series expansions (Dunn et al 1975). 
(') Obtained from ground state perturbation expansions (Pfeuty and Elliott 1971). 

Figure 2. Flow diagram of the two-dimensional bond-diluted transverse Ising model at zero 
temperature, showing the fixed points and typical flow lines. The critical curve g , ( p ) ,  above 
which there is no long-range order, is shown by bold lines. 

present scheme describes the major feature expected for this problem: a discontinuous 
jump in the critical curve at p c  from zero to a value close to one, according to the Harris 
(1974b) conjecture. Moreover, the chain-like aspect of the percolating cluster suggests 
that v,(p = p, )  > v g ( p  = l ) ,  which is verified in our case. 

As a final remark, we would like to mention that the extension of this method to 
obtain the phase diagram for the diluted two-dimensional TIM at any temperature is 
currently under investigation, allowing for site-dilution as well. 

I would like to thank Dr R B Stinchcombe for many discussions and encouragement 
throughout this work. Financial support from the SRC is also gratefully acknowledged. 



Letter to the Editor L183 

References 

Barber M N 1975 J. Phys. C: Solid State Phys. 8 L203 
Brout R 1959 Phys. Rev. 115 824 
Dunn A G,  Essam J W and Ritchie D S 1975 J. Phys. C: Solid State Phys. 8 4219 
Elliott R J and Saville I D 1974 J. Phys. C: Solid State Phys. 7 4293 
Elliott R J and Wood C 1971 J. Phys. C: Solid State Phys. 4 2359 
de Gennes P G 1963 Solid State Commun. 1 132 
Harris A B 1974a J.  Phys. C: Solid State Phys. 7 1671 
- 1974b J. Phys. C: Solid State Phys. 7 3082 
Hertz J 1976 Phys. Reo. B 14 1165 
Jayaprakash C, Kiedel E K and Wortis M 1978 Phys. Rev. B 18 3568 
Kadanoff L P 1976 Ann. Phys., NY 100 559 
Kadanoff L P and Houghton A 1975 Phys. Rev. B 11 377 
Katsura S 1962 Phys. Rev. 127 1508 
Kirkpatrick S 1977 Phys. Rev. B 15 1533 
Lage E 1976 DPhil thesis (Oxford) 
Migdal A A 1976 Sou. Phys.-JETP 42 743 
Niemeijer Th and Van Leeuwen J M J 1976 in Phase Transitions and Critical Phenomena ed. C Domb and 

Pfeuty P 1970 Ann. Phys., N Y  57 79 
- 1979 Phys. Lett. 72A 245 
Pfeuty P and Elliott R J 1971 J. Phys. C: Solid State Phys. 4 2370 
dos Santos R R 1980 DPhil thesis (Oxford) 
Stauffer D 1979 Phys. Rev. 54C 1 
Stinchcombe R 3 1973 J. Phys. C: Solid State Phys. 6 2459 
- 1979 J. Phys. C: Solid State Phys. 12 4533 
- 1981a to be published 
- 1981b J. Phys. C: Solid State Phys. to be published 
Suzuki M 1976 Prog. Theor. Phys. 56 1454 
Sykes M F and Essam J W 1964 J. Math. Phys. 5 117 
Uzelac J, Jullien R and Pfeuty P 1980 J. Phys. A: Math. Gen. 13 3735 
Uzelac K, Penson K A, Jullien R and Pfeuty P 1979 J. Phys. A :  Math. Gen. 12 L295 
Wallace D J and Zia R K P 1978 Rep. Prog. Phys. 41 1 
Wilson K G and Kogut J 1974 Phys. Rep. 12C 1975 
Yeomans J and Stinchcombe R B 1978 J. Phys. C: Solid State Phys. 11 L525 
- 1979 J. Phys. C: Solid State Phys. 12 347 
Young A P 1975 J. Phys. C: Solid State Phys. 8 L309 
Young A P and Stinchcombe R B 1975 J. Phys. C: Solid State Phys. 8 L535 
- 1976 J. Phys. C: Solid State Phys. 9 4419 

M S Green (New York: Academic) vol6 


